About US

CytoSeek's mission is to use cell membrane augmentation technology to unlock the potential of next generation advanced therapies.

We are a spinout company from the University of Bristol. Our novel cell membrane augmentation technology enables us to add new functionalities to cell therapies including tissue specific targeting and enhanced cell survivability. 

CytoSeek is engaged in proof of principle studies to demonstrate enhancement of cell therapies for cancer, heart disease, osteoarthritis and diabetic wound healing. We are looking to partner with cell therapy companies to bring these products to the clinic and ultimately enhance human health.



The next generation of advanced cell therapies will address conditions that are impossible to tackle through existing small molecule drugs. CytoSeek's technology is based on the research of Dr Adam Perriman, who pioneered a new methodology for the rational design of synthetic artificial membrane-binding proteins. This approach can be used to rapidly display any protein on the surface of any cell type.

CytoSeek's breakthroughs open the door for the development of a non-toxic, non-immunogenic and non-GM cell functionalisation technology, to provide homing, adhesion, immuno-stealth and hypoxia resistance to therapeutic cells. Excitingly however, we are only scratching the surface of what can be achieved with this technology. As use of cellular therapies grows, so will the need to rapidly tailor cells to specific environments.


We have been testing our platform through proof of principle projects and have shown utility in a range of areas within the rapidly growing market for advanced therapy medicinal product (ATMP). Examples of what can be achieve through our technology include:

CART S.jpg


We are developing a suite of homing proteins that will add enhanced homing and solid tumor invasion capacity to immuno-oncology therapies. We are also developing hybrid systems that impart both homing and enhanced survivability to immuno-oncology therapies.

Heart S.jpg

Cardiovascular cell therapy

We have successfully used CytoSeek’s technology to embed a cardiac homing protein within the membrane of human stem cells and shown that it significantly increases cardiac homing and retention in vivo.

Knee back S.jpg

Cartilage repair

We have successfully used CytoSeek’s technology to embed a cartilage extra-cellular matrix homing protein within the membrane of human stem cells and shown that it significantly increases joint retention in in vitro models.

Contact us if you are interested in finding out how we can enhance your cell therapies.

The team


Prof. Adam Perriman, Academic Founder


Andrew Wilson, University Representative


Dr Tom Green, Research Scientist


Dr David Coe, Research Scientist


Dr Ben Carter, COO

Supported by



  • Xiao, W., Green, T. I. P., Liang, X., Delint, R. C., Perry, G., Roberts, M. S., Le Vay, K., Back, C. R., Ascione, R., Wang, H., Race, P. R., and Perriman, A. W. (2019) Designer artificial membrane binding proteins to direct stem cells to the myocardium, Chem. Sci.Link

  • Deller, R. C., Richardson, T., Richardson, R., Bevan, L., Zampetakis, I., Scarpa, F., and Perriman, A. W. (2019) Artificial cell membrane binding thrombin constructs drive in situ fibrin hydrogel formation, Nat. Commun. 10, 1887. Link

  • Burke, M., Armstrong, J. P. K., Goodwin, A., Deller, R. C., Carter, B. M., Harniman, R. L., Ginwalla, A., Ting, V. P., Davis, S. A., and Perriman, A. W. (2017) Regulation of Scaffold Cell Adhesion Using Artificial Membrane Binding Proteins, Macromol. Biosci. 17. Link

  • Armstrong, J. P., Shakur, R., Horne, J. P., Dickinson, S. C., Armstrong, C. T., Lau, K., Kadiwala, J., Lowe, R., Seddon, A., Mann, S., Anderson, J. L., Perriman, A. W., and Hollander, A. P. (2015) Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue, Nat. Commun. 6, 7405. Link

Contact us

Email: info@cytoseek.uk

Twitter: @cytoseek

Cytoseek, Unit DX, St Philips Central, Albert Road, Bristol, BS2 0XJ